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It is shown that every Killing tensor (KT) identifies a solution for the equation of 
geodesic deviation (e.g.d.). The general integral of the above equation is also 
explicitly exhibited in a class of static spherically symmetric space-times found 
by Kimura. 

1. INTRODUCTION 

The fundamental role of the equation of geodesic deviation (e.g.d.) in 
general relativity is connected with the analysis of tidal forces, the focusing 
effect of gravity (Hawking and Ellis, 1973), the study of Green's functions 
for perturbation equations, and the evaluation of the first and higher 
derivatives of the world function and of the parallel propagator (Peters, 
1975). In spite of this, there are few attempts to calculate the general 
integral of the e.g.d., because of the complexity of the differential equations 
involved. 

In this paper we analyze the relations between Killing tensors (KTs) 
and solutions of the e.g.d. In particular, we develop a systematic method for 
the evaluation of solutions of the e.g.d., depending on the knowledge of the 
KTs of the given metric. 

tWork done under the auspices of the National Group for Mathematical Physics of C.N.R. 
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As an application, the e.g.d, is then solved in closed form in a class of 
static spherically symmetric space-times found by Kimura (Kimura, 1 976; 
1977; 1979). 

2. EQUATION OF GEODESIC DEVIATION AND KILLING 
TENSORS 

In a given space-time manifold referred to local coordinates x ~ ( a  = 
1,2,3,4) consider a geodesic of local equations x~=x~(s) ,  where s i s  an 
affine parameter. The e.g.d, may be written in the standard form (Misner  et 
al., 1973) 

VbV ~ V b V ~W,, + R~b~aVbI'V~V a =0  (1) 

where V a = dxa/ds is the tangent vector to the geodesic. 
Let W~)~ ( a = l  . . . . .  8) be eight solutions of equation (1). The fields 

W~)a are said to be independent if the 8×8 matrix with colutmns 
(W~)1. . .  W~)l , (d /ds)(W~), ) , . . . (d /ds)(W~), ) )  is nonsingular. It foIlows 
from standard theorems on systems of ordinary differential equat ions 
(Hartman, 1964) that the general integral of equation (1) is obtained as a 
linear combination with constant coefficients of eight independent solutions 
W~la. We shall now deal with the problem of determining independent  
solutions of equation (1) by the use of geometric methods. 

In general, it may be easily shown that the fields V~ and sV~, are 
solutions of equation (1). Moreover, it is also known that every Kil l ing 
vector admitted by the given metric is a solution of the e.g.d. (Manoff ,  
1979). The above property of Killing vectors may also be extended to KTs 
in the sense clarified by the following theorem. 

Theorem 1. Let gaa,... 
W~ defined as 

be a KT of order (p  + 1). Then the f ie ld  ap 

W~ = Kay,... ~pV ~' • • • V ~p (2) 

is a solution of the e.g.d. (1). 

Proof Let us write the definition of KT in the form 

ffbK~a,... =--(vaKo,...~pb +''" ap 

"-k ~7 a p K b a a l  . . . ap_~) (3) 
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Evaluating the V ¢ V ~ derivative of both sides of equation (3) and transvect- 
ing with VbV  ~, . .  • V~,, we obtain, in view of the fact that V c v  cV ~ =0,  

( p + l ) V~VC v ~ v c( l~ oa, . . . .  y ° "  " V°~ ) 

: - -  v b v c v  al " ' "  V at' V c V aKa~ . . . .  pb (4) 

To complete the proof, it is sufficient to apply the commutation rule for 
covariant differentiation and the definition of KT in the fight-hand side of 
equation (4). Q.E.D. 

In order to obtain a better understanding of the significance of Theo- 
rem 1, it is convenient to make the following comments. 

In the first place, as far as the applicability of the theorem is concerned, 
it is to be noticed that whenever K~ , . . . ~ ,  is redundant, i.e., it is a linear 
combination of symmetrized products of lower-order KTs, the field (2) 
depends linearly on the solutions of the e.g.d, identified by the lower-order 
KTs. For example, in the Schwarzschild space-time, the above theorem may 
possibly be used to find solution of the e.g.d, independent of the Killing 
vectors of the metric, if and only if p + 1 >3,  because the Schwarzschild 
metric does not admit nonredundant KTs of order two and three (Ikeda and 
Kimura, 1972; Caviglia and Zordan, 1981). 

As a second remark, we want to emphasize that a converse of Theorem 
1 holds in the following weakened form. 

Theorem 2. Let Ka~,. . .a,  be a totally symmetric tensor field of 
order p + 1 such that every field Wo defined by equation (2) is a 
solution of the e.g.d. (1). Then K ~  . . . , ,  satisfies the relation 

V c V  ( b K a a t  . . . .  .,,) : 0 (5)  

Proof. Using the Ricci identities and the symmetries of the field 
Ka~,. . . ,p  the e.g.d, may be written in the equivalent form 

VcV ~ ' . . .  V % V b V t , [ ( p + l ) X 7 c K ~ , . . . ~  + V~Kca ' . . . .  ,] 

t 
= VcV ° ' ' ' '  V~,V b V ~ V oKca~...~, (6) 

Hence, it follows from equation (6) and the arbitrariness of V a that 

b ~7 ( c K a a l . . .  ap) + V c ~7 (al Kaa2-.. %b) "[- " " " 

"b V % ~7 ( b K a c a ~ . . .  ap-i)  : X7 a V ( b K c a j . . .  ap) (7) 
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Subtraction of the term (p+2)XTaX7 (bKca,...~p) from both sides of 
equation (7) yields 

[~Tb V (cK,~,~, . . . .  , ) -  ~7,, ~y (b K~,,, . . . .  ,)] + . . .  

+ [ V % V  (bK~,...,~,_,)-- V,, V (bKca,...%)] 

=--(P+l)XYaV (bKca,'"%) (8) 

Evaluating the difference between equation (7) and the relation obtained 
from equation (7) by interchange of the indices a and b, it may be easily 
shown that the expression in the first square brackets of equation (8) 
vanishes. By repeated application of this procedure, it follows that the 
left-hand side of equation (8) vanishes identically. Hence, we conclude that  
equation (5) holds. Q.E_D. 

In general, the reIation (5) is not equivalent to the definition of a IKT 
(bKaa~...%) : 0 .  However, every solution of equation (5) will give a ]KT 

of order p + 1 if the metric of the space-time admits only null parallel totally 
symmetric tensor fields of order p + 2. For example, using the Ricci idexqti- 
ties, we found that in all vacuum space-times, with the only exception of the 
Petrov type N, a symmetric tensor of order two identifies a KT if the 
conditions of Theorem 2 are satisfied. 

3. AN APPLICATION TO A CLASS OF SPHERICALLY 
SYMMETRIC SPACE-TIMES 

In this section we shall apply the results of Theorem 1 to the explicit 
determination of the general integral of the e.g.d, for the nonradial geodes- 
ics of a suitable class of spherically symmetric space-time metrics. 

Let us consider the line element 

ds2=-(br)-2dr2-r2(dO2+sin20dep2)+b-lr2dt 2 (9) 

where b is a positive constant. The family of metrics (9) was found by 
Kimura (see Kimura, 1976, case IIC) in the discussion of quadratic first 
integrals of the geodesic equation of motion in static, spherically symmetric 
space-times (Kimura, 1976; 1977; 1979). The metric (9) admits the Killing 
vectors 

X a dx a = _ r 2sin ~ dO - r 2sin 0 cos 0 cos ~ d~ (10a) 
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Y~ dx a = rZcos ~b dO - r 2sin Ocos Osin~ de  

Z a dx ~ = r 2sin20 de  

Uadxa=(r2 /b)d t  

(lOb) 

(10c) 

(lOd) 

and 
nonvanishing components are given by (Kimura, 1976) 

the second-order nonredundant Killing t e n s o r s  Kab and H~b whose 

K22 = - t2r 4, K33 = -- t2r4sin2 0 

(11) 

K41 : KI4 : rt / (2b2),  

K44 = r2/b 2 + r4t2/b 

n41 : Hi4 : r / / ( 2b  2 ), 

H44 = 2r4t / b  

/-/22 : - 2 t r  4, //33 : -2trasin20 

(12) 

where the coordinates r, 0, q~, t are denoted by x 1, x 2, x 3, x 4, respectively. 
It may be shown that the finite equations for a nonradial, timelike, 

equatorial geodesic are given by 

r : a s i n ( b s + c ) ,  0 : ~'/2, ~ = - ( b a 2 ) - l J c o t g ( b s + c ) + f  

t = - (ba2) -~Eco tg (bs  + c )+ d (13) 

where c, d, E, f ,  J are constants of integration and a: = ( E 2 / b  - j2)1/2. It 
follows that the tangent field V a is determined by 

V ~ d x a = - ( b r ) - 2 ? d r - r 2 t ~ d O - r 2 s i n 2 0 + d q J + b - ' r 2 i d t  (14) 

where the superimposed dot denotes the derivative with respect to s. 
Substituting equations (11), (12), and the components of V ~ obtained from 
equations (13) into equation (2) we obtain two solutions P~ and Qa of the 
e.g.d, given by 

Pa dx~ = Et / (2b2r)  dr - Jt2r 2 dd? + (½rti" + E + Ebt2r 2 ) / b  2 dt (15) 

Q a d x a = E / ( 2 b 2 r ) d r - 2 S t r 2 d ~ + ( ½ r i ' + 2 b E t r Z ) / b 2 d t  (16) 

Consider now the fields (10), (15); and (16) evaluated on the geodesic 
(13) as well as the vectors Va, given by equation (14), and sV~. It may be 
shown by a straightforward but long calculation that these vectors are eight 
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i ndependen t  solut ions  of  the e.g.d., so that  they give rise to the g e n e r a l  
in tegral  of  the e.g.d. 
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